Monthly Archives: February 2017

Does well-ordering contradict Cantor?

The other day, I received an email that actually excited me! It’s a question related to Cantor’s diagonalization, but there’s absolutely nothing cranky about it! It’s something interesting and subtle. So without further ado:

Cantor’s diagonalization says that you can’t put the reals into 1 to 1 correspondence with the integers. The well-ordering theorem seems to suggest that you can pick a least number from every set including the reals, so why can’t you just keep picking least elements to put them into 1 to 1 correspondence with the reals. I understand why Cantor says you can’t. I just don’t see what is wrong with the other arguments (other than it must be wrong somehow). Apologies for not being able to state the argument in formal maths, I’m around 20 years out of practice for formal maths.

As we’ve seen in too many discussions of Cantor’s diagonalization, it’s a proof that shows that it is impossible to create a one-to-one correspondence between the natural numbers and the real numbers.

The Well-ordering says something that seems innoccuous at first, but which, looked at in depth, really does appear to contradict Cantor’s diagonalization.

A set S is well-ordered if there exists a total ordering <= on the set, with the additional property that for any subset T \subseteq S, T has a smallest element.

The well-ordering theorem says that every non-empty set can be well-ordered. Since the set of real numbers is a set, that means that there exists a well-ordering relation over the real numbers.

The problem with that is that it appears that that tells you a way of producing an enumeration of the reals! It says that the set of all real numbers has a least element: Bingo, there’s the first element of the enumeration! Now you take the set of real numbers excluding that one, and it has a least element under the well-ordering relation: there’s the second element. And so on. Under the well-ordering theorem, then, every set has a least element; and every element has a unique successor! Isn’t that defining an enumeration of the reals?

The solution to this isn’t particularly satisfying on an intuitive level.

The well-ordering theorem is, mathematically, equivalent to the axiom of choice. And like the axiom of choice, it produces some very ugly results. It can be used to create “existence” proofs of things that, in a practical sense, don’t exist in a usable form. It proves that something exists, but it doesn’t prove that you can ever produce it or even identify it if it’s handed to you.

So there is an enumeration of the real numbers under the well ordering theorem. Only the less-than relation used to define the well-ordering is not the standard real-number less than operation. (It obviously can’t be, because under well-ordering, every set has a least element, and standard real-number less-than doesn’t have a least element.) In fact, for any ordering relation \le_x that you can define, describe, or compute, \le_x is not the well-ordering relation for the reals.

Under the well-ordering theorem, the real numbers have a well-ordering relation, only you can’t ever know what it is. You can’t define any element of it; even if someone handed it to you, you couldn’t tell that you had it.

It’s very much like the Banach-Tarski paradox: we can say that there’s a way of doing it, only we can’t actually do it in practice. In the B-T paradox, we can say that there is a way of cutting a sphere into these strange pieces – but we can’t describe anything about the cut, other than saying that it exists. The well-ordering of the reals is the same kind of construct.

How does this get around Cantor? It weasels its way out of Cantor by the fact that while the well-ordering exists, it doesn’t exist in a form that can be used to produce an enumeration. You can’t get any kind of handle on the well-ordering relation. You can’t produce an enumeration from something that you can’t create or identify – just like you can’t ever produce any of the pieces of the Banach-Tarski cut of a sphere. It exists, but you can’t use it to actually produce an enumeration. So the set of real numbers remains non-enumerable even though it’s well-ordered.

If that feels like a cheat, well… That’s why a lot of people don’t like the axiom of choice. It produces cheatish existence proofs. Connecting back to something I’ve been trying to write about, that’s a big part of the reason why intuitionistic type theory exists: it’s a way of constructing math without stuff like this. In an intuitionistic type theory (like the Martin-Lof theory that I’ve been writing about), it doesn’t exist if you can’t construct it.

Understanding Global Warming Scale Issues

Aside from the endless stream of Cantor cranks, the next biggest category of emails I get is from climate “skeptics”. They all ask pretty much the same question. For example, here’s one I received today:

My personal analysis, and natural sceptisism tells me, that there are something fundamentally wrong with the entire warming theory when it comes to the CO2.

If a gas in the atmosphere increase from 0.03 to 0.04… that just cant be a significant parameter, can it?

I generally ignore it, because… let’s face it, the majority of people who ask this question aren’t looking for a real answer. But this one was much more polite and reasonable than most, so I decided to answer it. And once I went to the trouble of writing a response, I figured that I might as well turn it into a post as well.

The current figures – you can find them in a variety of places from wikipedia to the US NOAA – are that the atmosphere CO2 has changed from around 280 parts per million in 1850 to 400 parts per million today.

Why can’t that be a significant parameter?

There’s a couple of things to understand to grasp global warming: how much energy carbon dioxide can trap in the atmosphere, and hom much carbon dioxide there actually is in the atmosphere. Put those two facts together, and you realize that we’re talking about a massive quantity of carbon dioxide trapping a massive amount of energy.

The problem is scale. Humans notoriously have a really hard time wrapping our heads around scale. When numbers get big enough, we aren’t able to really grasp them intuitively and understand what they mean. The difference between two numbers like 300 and 400ppm is tiny, we can’t really grasp how in could be significant, because we aren’t good at taking that small difference, and realizing just how ridiculously large it actually is.

If you actually look at the math behind the greenhouse effect, you find that some gasses are very effective at trapping heat. The earth is only habitable because of the carbon dioxide in the atmosphere – without it, earth would be too cold for life. Small amounts of it provide enough heat-trapping effect to move us from a frozen rock to the world we have. Increasing the quantity of it increases the amount of heat it can trap.

Let’s think about what the difference between 280 and 400 parts per million actually means at the scale of earth’s atmosphere. You hear a number like 400ppm – that’s 4 one-hundreds of one percent – that seems like nothing, right? How could that have such a massive effect?!

But like so many other mathematical things, you need to put that number into the appropriate scale. The earths atmosphere masses roughly 5 times 10^21 grams. 400ppm of that scales to 2 times 10^18 grams of carbon dioxide. That’s 2 billion trillion kilograms of CO2. Compared to 100 years ago, that’s about 800 million trillion kilograms of carbon dioxide added to the atmosphere over the last hundred years. That’s a really, really massive quantity of carbon dioxide! scaled to the number of particles, that’s something around 10^40th (plus or minus a couple of powers of ten – at this scale, who cares?) additional molecules of carbon dioxide in the atmosphere. It’s a very small percentage, but it’s a huge quantity.

When you talk about trapping heat, you also have to remember that there’s scaling issues there, too. We’re not talking about adding 100 degrees to the earths temperature. It’s a massive increase in the quantity of energy in the atmosphere, but because the atmosphere is so large, it doesn’t look like much: just a couple of degrees. That can be very deceptive – 5 degrees celsius isn’t a huge temperature difference. But if you think of the quantity of extra energy that’s being absorbed by the atmosphere to produce that difference, it’s pretty damned huge. It doesn’t necessarily look like all that much when you see it stated at 2 degrees celsius – but if you think of it terms of the quantity of additional energy being trapped by the atmosphere, it’s very significant.

Calculating just how much energy a molecule of CO2 can absorb is a lot trickier than calculating the mass-change of the quantity of CO2 in the atmosphere. It’s a complicated phenomenon which involves a lot of different factors – how much infrared is absorbed by an atom, how quickly that energy gets distributed into the other molecules that it interacts with… I’m not going to go into detail on that. There’s a ton of places, like here, where you can look up a detailed explanation. But when you consider the scale issues, it should be clear that there’s a pretty damned massive increase in the capacity to absorb energy in a small percentage-wise increase in the quantity of CO2.