Garbage Collection with Semispaces

The roots of most garbage collection ideas come from the Lisp community. Lisp was really the first major garbage collection language that was used to write complicated things. So it’s natural that the first big innovation in the world of GC that we’re going to look at comes from the Lisp community.

In early Lisp systems with garbage collection, the pause that occured when the GC did a mark/sweep to reclaim memory was very long, so it was important to find ways to make the cycle faster. Lisp code had the properly that it tended to allocate a lot of small, short-lived objects: Lisp, particularly early lisp, tended to represent everything using tiny structures called cons cells, and Lisp programs generate bazillions of them. Lots of short-lived cons cells needed to get released in every GC cycle, and the bulk of the GC pause was caused by the amount of time that the GC spend going through all of the dead cons cells, and releasing them.

Beyond just that speed issue, there’s another problem with naive mark-sweep collection when you’re dealing with large numbers of short lived objects, called heap fragmentation. The GC does a pass marking all of the memory in use, and then goes through each unused block of memory, and releases it. What can happen is that you can end up with lots of memory free, but scattered around in lots of small chunks. For an extreme example, imagine that you’re building two lists made up of 8-byte cells. You allocate a cell for list A, and then you do something using A, and generate a new value which you add as a new cell in list B. So you’re alternating: allocate a cell for A, then a cell for B. When you get done, you discard A, and just keep B. After the GC runs, what does your memory look like? If A and B each have 10,000 cells, then what you have is 8 bytes of free memory that used to be part of A, and then 8 bytes of used memory for a cell of B, then 8 bytes of free, then 8 used, etc. You’ve ended up with 80,000 bytes of free memory, none of which can be used to store anything larger than 8 bytes. Eventually, you can wind up with your entire available heap broken into small enough pieces that you can’t actually use it for anything.

What the lisp folks came up with is a way of getting rid of fragmentation, and dramatically reducing the cost of the sweep phase, by using something called semispaces. With semispaces, you do some cleverness that can be summed up as moving from mark-sweep to copy-swap.

The idea is that instead of keeping all of your available heap in one chunk, you divide it into two equal regions, called semispaces. You call one of the semispaces the primary, and the other the secondary. When you allocate memory, you only allocate from the primary space. When the primary space gets to be almost full, you start a collection cycle.

When you’re doing your mark phase, instead of just marking each live value, you copy it to the secondary space. When all of the live values have been copied to the secondary space, you update all of the pointers within the live values to their new addresses in the secondary space.

Then, instead of releasing each of the unused values, you just swap the primary and secondary space. Everything in the old primary space gets released, all at once. The copy phase also compacts everything as it moves it into the secondary space, consolidating all of the free memory in one contiguous chunk. If you implement it well, you can also have beneficial side effect of moving things close in ways that improve the cache performance of your program.

For Lisp programs, semispaces are a huge win: they reduce the cost of the sweep phase to a constant time, at the expense of a nearly linear increase in mark time, which works out really well. And it eliminates the problem of fragmentation. All in all, it’s a great tradeoff!

Of course, it’s got some major downsides as well, which can make it work very poorly in some cases:

  1. The copy phase is significantly more expensive than a traditional mark-phase. The time it takes to copy is linear in the total amount of live data, versus linear in the number of live objects in a conventional mark. Whether semispaces will work well for a given application depend on the properties of the data that you’re working with. If you’ve got lots of large objects, then the increase in time caused by the copy instead of mark can significantly outweigh the savings of the almost free swap, making your GC pauses much longer; but if you’ve got lots of short-lived, small objects, then the increase in time for the copy can be much smaller than time savings from the swap, resulting in dramatically shortened GC pauses.
  2. Your application needs to have access to twice as much memory as you actually expect it to use, because you need two full semispaces. There’s really no good way around this: you really need to have a chunk of unused memory large enough to store all of your live objects – and it’s always possible that nearly everything is alive for a while, meaning that you really do need two equally sized semispaces.
  3. You don’t individually release values, which means that you can’t have any code that runs when an value gets collected. In a conventional mark-sweep, you can have objects provide functions called finalizers to help them clean up when they’re released – so objects like files can close themselves. In a semispace, you can’t do that.

The basic idea of semispaces is beautiful, and it’s adaptable to some other environments where a pure semispace doesn’t make sense, but some form of copying and bulk release can work out well.

For example, years ago, at a previous job, one of my coworkers was working on a custom Java runtime system for a large highly scalable transaction processing system. The idea of this was that you get a request from a client system to perform some task. You perform some computation using the data from the client request, update some data structures on the server, and then return a result to the client. Then you go on to the next request.

The requests are mostly standalone: they do a bunch of computation using the data that they recieved in the request. Once they’re done with a given request, almost nothing that they used processing it will ever be looked at again.

So what they did was integrate a copying GC into the transaction system. Each time they started a new transaction, they’d give it a new memory space to live it. When the transaction finished, they’d do a quick copy cycle to copy out anything that was referenced in the master server data outside the transaction, and then they’d just take that chunk of memory, and make it available for use by the next transaction.

The result? Garbage collection became close to free. The number of pointers into the transaction space from the master server data was usually zero, one, or two. That meant that the copy phase was super-short. The release phase was constant time, just dropping the pointer to the transaction space back into the available queue.

So they were able to go from an older system which had issues with GC pauses to a new system with no pauses at all. It wouldn’t work outside of that specific environment, but for that kind of application, it screamed.

3 thoughts on “Garbage Collection with Semispaces”

  1. It seems like a 55/45 split could be done in certain situations. If you’ve filled your available memory, and garbage collection gets rid of negligible garbage, then you’re probably in trouble. So assuming whenever you’ve filled that 55%, you can get rid of enough garbage to shrink it into 45%, you’d get the advantage of 5% more memory to be used before a full garbage collection. In extreme situations, you could even do, say, a 70/30 split; it’s have to be a scenario where rare, lengthy GCs weren’t a problem, but you’d have smooth sailing until then. I’m guess there were papers on this subject, written long ago, and that it’s massively inferior to modern GCs, but playing around with that 50/50 rule could be interesting.

  2. Wow, that brings back the memories. Scheme used a copying GC as did a number of Lisp versions. I worked with a group that did a parallelized Scheme copying GC. We called it Multitrash.

    There were a lot of more sophisticated copying garbage collectors on the various Lisp machines. Dave Moon designed some of these. One moved items that had survived one GC into a different space that was garbage collected less often, but it required hardware support to track the age of objects.

    Back then, in the 1960s-1980s, garbage collection was considered horribly exotic and ridiculously expensive, unlike the cost of programming time, fixing storage bugs and so on. Real programmers created their own objects from raw seething bits. Now, many programming languages have some kind of storage reclamation scheme, even Apple’s Objective C.

    1. I’m going to get to generational collection (that scheme you mentioned where you did less frequent GC on things that survived their first GC cycle) in another post.

Leave a Reply