Tag Archives: gravity

The Gravitational Force of Rubbish

Imagine, for just a moment, that you were one a group of scientists that had proven the most important, the most profound, the most utterly amazing scientific discovery of all time. Where would you publish it?

Maybe Nature? Science? Or maybe you’d prefer to go open-access, and go with PLOS ONE? Or more mainstream, and send a press release to the NYT?

Well, in the case of today’s crackpots, they bypassed all of those boring journals. They couldn’t be bothered with a pompous rag like the Times. No, they went for the really serious press: America Now with Leeza Gibbons.

What did they go to this amazing media outlet to announce? The most amazing scientific discovery of all time: gravity is an illusion! There’s no gravity. In fact, not just is there no gravity, but all of that quantum physics stuff? It’s utter rubbish. You don’t need any of that complicated stuff! No – you need only one thing: the solar wind.

A new theory on the forces that control planetary orbit refutes the 400-year old assumptions currently held by the scientific community. Scientific and engineering experts Gerhard and Kevin Neumaier have established a relationship between solar winds and a quantized order in both the position and velocity of the solar system’s planets, and movement at an atomic level, with both governed by the same set of physics.

The observations made bring into question the Big Bang Theory, the concept of black holes, gravitational waves and gravitons. The Neumaiers’ paper, More Than Gravity, is available for review at MoreThanGravity.com

Pretty damned impressive, huh? So let’s follow their instructions, and go over to their website.

Ever since humankind discovered that the Earth and the planets revolved around the Sun, there was a question about what force was responsible for this. Since the days of Newton, science has held onto the notion that an invisible force, which we have never been able to detect, controls planetary motion. There are complicated theories about black holes that have never been seen, densities of planets that have never been measured, and subatomic particles that have never been detected.

However, it is simpler than all of that and right in front of us. The Sun and the solar wind are the most powerful forces in our solar system. They are physically moving the planets. In fact, the solar wind spins outward in a spiral at over a million miles per hour that controls the velocity and distances that planets revolve around the Sun. The Sun via the solar wind quantizes the orbits of the planets – their position and speed.

The solar wind also leads to the natural log and other phenomenon from the very large scale down to the atomic level. This is clearly a different idea than the current view that has been held for over 400 years. We have been working on this for close 50 years and thanks to satellite explorations of space have data that just was not available when theories long ago were developed. We think that we have many of the pieces but there are certainly many more to be found. We set this up as a web site, rather as some authoritative book so that there would be plenty of opportunity for dialog. The name for this web site, www.MorethanGravity.com was chosen because we believe there is far more to this subject than is commonly understood. Whether you are a scientific expert in your field or just have a general interest in how our solar system works, we appreciate your comments.

See, it’s all about the solar wind. There’s no such thing as gravity – that’s just nonsense. The sun produces the solar wind, which does absolutely everything. The wind comes out of the sun, and spirals out from the sun. That spiral motion has eddies in it an quantized intervals, and that’s where the planets are. Amazing, huh?

Remember my mantra: the worst math is no math. This is a beautiful demonstration
of that.

Of course… why does the solar wind move in a spiral? Everything we know says that in the absence of a force, things move in a straight line. It can’t be spiraling because of gravity, because there is no gravity. So why does it spiral? Our brilliant authors don’t bother to say. What makes it spiral, instead of just move straight? Mathematically, spiral motion is very complicated. It requires a centripetal force which is smaller than the force that would produce an orbit. Where’s that force in this framework? There isn’t any. They just say that that’s how the solar wind works, period. There are many possible spirals, with different radial velocities – which one does the solar wind follow according to this, and why? Again, no answer from the authors.

Or… why is the sun producing the solar wind at all? According to those old, stupid theories that this work of brilliance supercedes, the sun produces a solar wind because it’s fusing hydrogen atoms into helium. That’s happening because gravity is causing the atoms of the sun to be compressed together until they fuse. Without gravity, why is fusion happening at all? And given that it’s happening, why does the sun not just explode into a supernova? We know, from direct observation, that the energy produced by fusion creates an outward force. But gravity can’t be holding the sun together – so why is the sun there at all? Still, no answers.

They do, eventually, do some math. One of the big “results” of this hypothesis is about the “quantization” of the orbits of planets around the sun. They were able to develop a simple equation which predicts the locations where planets could exist in their “solar wind” system.

Let’s start with the distance between the planets and the Sun. We guessed that if the solar system was like an atom, that planetary distance would be quantized. This is to say that we thought that the planets would have definite positions and that they would be either in the position or it would be empty. In a mathematical sense, this would be represented by a numerical integer ordering (0,1,2,3,…). If the first planet, Mercury was in the 0 orbital, how would the rest of the planets line up? Amazingly well we found.

If we predict the distance from the surface of the Sun to each planet in this quantized approach, the results are astounding. If D equals the mean distance to the surface of the Sun, and d0 as the distance to Mercury, we can describe the relationship that orders the planets mathematically as:

 D=d_0 S^n

Each planetary position can be predicted from this equation in a simple calculation as we increase the integer (or planet number) n. S is the solar factor, which equals 1.387. The solar factor is found in the differential rotation of the Sun and the profile of the solar wind which we will discuss later.

Similar to the quantized orbits that exist within an atom, the planetary bodies are either there or not. Mercury is in the zero orbital. The next orbital is missing a planet. The second, third, and fourth orbitals are occupied by Venus, Earth, and Mars respectively. The fifth orbital is missing. The sixth orbital is filled with Ceres. Ceres is described as either the largest of all asteroids or a minor planet (with a diameter a little less than half that of Pluto), depending on who describes it. Ceres was discovered in 1801 as astronomers searched for the missing planets that the Titius-Bode Law predicted would exist.

So. What they found was an exponential equation which products very approximate versions of the size of first 8 planets’ orbits, as well as a couple of missing ones.

This is, in its way, interesting. Not because they found anything, but rather because they think that this is somehow profound.

We’ve got 8 data points (or 9, counting the asteroid belt). More precisely, we have 9 ranges, because all of the orbits are elliptical,but the authors of this junk are producing a single number for the size of the orbits, and they can declare success if their number falls anywherewithin the range from perihelion to aphelion in each of the orbits.

It would be shocking if there weren’t any number of simple equations that described exactly the 9 data points of the planet’s orbits.

But they couldn’t even make that work directly. They only manage to get a partial hit – getting an equation that hits the right points, but which also generates a bunch of misses. There’s nothing remotely impressive about that.

From there, they move on to the strawmen. For example, they claim that their “solar wind” hypothesis explains why the planets all orbit in the same direction on the same plane. According to them, if orbits were really gravitational, then planets would orbit in random directions on random planes around the sun. But their theory is better than gravity, because it says why the planets are in the same plane, and why they’re all orbiting in the same direction.

The thing is, this is a really stupid argument. Why are the planets in the same plane, orbiting in the same direction? Because the solar system was formed out of a rotating gas cloud. There’s a really good, solid, well-supported explanation of why the planets exist, and why they orbit the sun the way they do. Gravity doesn’t explain all of it, but gravity is a key piece of it.

What they don’t seem to understand is how amazingly powerful the theory of gravity is as a predictive tool. We’ve sent probes to the outer edges of the solar system. To do that, we didn’t just aim a rocket towards Jupiter and fire it off. We’ve done things like the Cassini probe, where we launched a rocket towards Venus. It used the gravitational field of Venus twice to accelerate it with a double-slingshot maneuver, and send it back towards earth, using the earth’s gravity to slingshot it again, to give it the speed it needed to get to Jupiter.

This wasn’t a simple thing to do. It required an extremely deep understanding of gravity, with extremely accurate predictions of exactly how gravity behaves.

How do our brilliant authors answer this? By handwaving. The extend of their response is:

Gravitational theory works for things like space travel because it empirically measures the force of a planet, rather than predicting it.

That’s a pathetic handwave, and it’s not even close to true. The gravitational slingshot is a perfect answer to it. A slingshot doesn’t just use some “empirically measured” force of a planet. It’s a very precise prediction of what the forces will be at different distances, how that force will vary, and what effects that force will have.

They do a whole lot more handwaving of very much the same order. Pure rubbish.