Representational Crankery: the New Reals and the Dark Number

There’s one kind of crank that I haven’t really paid much attention to on this blog, and that’s the real number cranks. I’ve touched on real number crankery in my little encounter with John Gabriel, and back in the old 0.999…=1 post, but I’ve never really given them the attention that they deserve.

There are a huge number of people who hate the logical implications of our definitions real numbers, and who insist that those unpleasant complications mean that our concept of real numbers is based on a faulty definition, or even that the whole concept of real numbers is ill-defined.

This is an underlying theme of a lot of Cantor crankery, but it goes well beyond that. And the basic problem underlies a lot of bad mathematical arguments. The root of this particular problem comes from a confusion between the representation of a number, and that number itself. “$\frac{1}{2}$” isn’t a number: it’s a notation that we understand refers to the number that you get by dividing one by two.

There’s a similar form of looniness that you get from people who dislike the set-theoretic construction of numbers. In classic set theory, you can construct the set of integers by starting with the empty set, which is used as the representation of 0. Then the set containing the empty set is the value 1 – so 1 is represented as { 0 }. Then 2 is represented as { 1, 0 }; 3 as { 2, 1, 0}; and so on. (There are several variations of this, but this is the basic idea.) You’ll see arguments from people who dislike this saying things like “This isn’t a construction of the natural numbers, because you can take the intersection of 8 and 3, and set intersection is meaningless on numbers.” The problem with that is the same as the problem with the notational crankery: the set theoretic construction doesn’t say “the empty set is the value 0″, it says “in a set theoretic construction, the empty set can be used as a representation of the number 0.

The particular version of this crankery that I’m going to focus on today is somewhat related to the inverse-19 loonies. If you recall their monument, the plaque talks about how their work was praised by a math professor by the name of Edgar Escultura. Well, it turns out that Escultura himself is a bit of a crank.

The specify manifestation of his crankery is this representational issue. But the root of it is really related to the discomfort that many people feel at some of the conclusions of modern math.

A lot of what we learned about math has turned out to be non-intuitive. There’s Cantor, and Gödel, of course: there are lots of different sizes of infinities; and there are mathematical statements that are neither true nor false. And there are all sorts of related things – for example, the whole ideaof undescribable numbers. Undescribable numbers drive people nuts. An undescribable number is a number which has the property that there’s absolutely no way that you can write it down, ever. Not that you can’t write it in, say, base-10 decimals, but that you can’t ever write down anything, in any form that uniquely describes it. And, it turns out, that the vast majority of numbers are undescribable.

This leads to the representational issue. Many people insist that if you can’t represent a number, that number doesn’t really exist. It’s nothing but an artifact of an flawed definition. Therefore, by this argument, those numbers don’t exist; the only reason that we think that they do is because the real numbers are ill-defined.

This kind of crackpottery isn’t limited to stupid people. Professor Escultura isn’t a moron – but he is a crackpot. What he’s done is take the representational argument, and run with it. According to him, the only real numbers are numbers that are representable. What he proposes is very nearly a theory of computable numbers – but he tangles it up in the representational issue. And in a fascinatingly ironic turn-around, he takes the artifacts of representational limitations, and insists that they represent real mathematical phenomena – resulting in an ill-defined number theory as a way of correcting what he alleges is an ill-defined number theory.

His system is called the New Real Numbers.

In the New Real Numbers, which he notates as $R^*$, the decimal notation is fundamental. The set of new real numbers consists exactly of the set of numbers with finite representations in decimal form. This leads to some astonishingly bizarre things. From his paper:

3) Then the inverse operation to multiplication called division; the result of dividing a decimal by another if it exists is called quotient provided the divisor is not zero. Only when the integral part of the devisor is not prime other than 2 or 5 is the quotient well defined. For example, 2/7 is ill defined because the quotient is not a terminating decimal (we interpret a fraction as division).

So 2/7ths is not a new real number: it’s ill-defined. 1/3 isn’t a real number: it’s ill-defined.

4) Since a decimal is determined or well-defined by its digits, nonterminating decimals are ambiguous or ill-defined. Consequently, the notion irrational is ill-defined since we cannot cheeckd all its digits and verify if the digits of a nonterminaing decimal are periodic or nonperiodic.

After that last one, this isn’t too surprising. But it’s still absolutely amazing. The square root of two? Ill-defined: it doesn’t really exist. e? Ill-defined, it doesn’t exist. $\pi$? Ill-defined, it doesn’t really exist. All of those triangles, circles, everything that depends on e? They’re all bullshit according to Escultura. Because if he can’t write them down in a piece of paper in decimal notation in a finite amount of time, they don’t exist.

Of course, this is entirely too ridiculous, so he backtracks a bit, and defines a non-terminating decimal number. His definition is quite peculiar. I can’t say that I really follow it. I think this may be a language issue – Escultura isn’t a native english speaker. I’m not sure which parts of this are crackpottery, which are linguistic struggles, and which are notational difficulties in reading math rendered as plain text.

5) Consider the sequence of decimals,

(d)^na_1a_2…a_k, n = 1, 2, …, (1)

where d is any of the decimals, 0.1, 0.2, 0.3, …, 0.9, a_1, …, a_k, basic integers (not all 0 simultaneously). We call the nonstandard sequence (1) d-sequence and its nth term nth d-term. For fixed combination of d and the a_j’s, j = 1, …, k, in (1) the nth term is a terminating decimal and as n increases indefinitely it traces the tail digits of some nonterminating decimal and becomes smaller and smaller until we cannot see it anymore and indistinguishable from the tail digits of the other decimals (note that the nth d-term recedes to the right with increasing n by one decimal digit at a time). The sequence (1) is called nonstandard d-sequence since the nth term is not standard g-term; while it has standard limit (in the standard norm) which is 0 it is not a g-limit since it is not a decimal but it exists because it is well-defined by its nonstandard d-sequence. We call its nonstandard g-limit dark number and denote by d. Then we call its norm d-norm (standard distance from 0) which is d > 0. Moreover, while the nth term becomes smaller and smaller with indefinitely increasing n it is greater than 0 no matter how large n is so that if x is a decimal, 0 < d < x.

I think that what he’s trying to say there is that a non-terminating decimal is a sequence of finite representations that approach a limit. So there’s still no real infinite representations – instead, you’ve got an infinite sequence of finite representations, where each finite representation in the sequence can be generated from the previous one. This bit is why I said that this is nearly a theory of the computable numbers. Obviously, undescribable numbers can’t exist in this theory, because you can’t generate this sequence.

Where this really goes totally off the rails is that throughout this, he’s working on the assumption that there’s a one-to-one relationship between representations and numbers. That’s what that “dark number” stuff is about. You see, in Escultura’s system, 0.999999… is not equal to one. It’s not a representational artifact. In Escultura’s system, there are no representational artifacts: the representations are the numbers. The “dark number”, which he notates as $d^*$, is (1-0.99999999…) and is the smallest number greater than 0. And you can generate a complete ordered enumeration of all of the new real numbers, ${0, d^*, 2d^*, 3d^*, ..., n-2d^*, n-d^*, n, n+d^*, ...}$.

Reading Escultura, every once in a while, you might think he’s joking. For example, he claims to have disproven Fermat’s last theorem. Fermat’s theorem says that for n>2, there are no integer solutions for the equation $x^n + y^n = z^n$. Escultura says he’s disproven this:

The exact solutions of Fermat’s equation, which are the counterexamples to FLT, are given by the triples (x,y,z) = ((0.99…)10^T,d*,10^T), T = 1, 2, …, that clearly satisfies Fermat’s equation,

x^n + y^n = z^n, (4)

for n = NT > 2. Moreover, for k = 1, 2, …, the triple (kx,ky,kz) also satisfies Fermat’s equation. They are the countably infinite counterexamples to FLT that prove the conjecture false. One counterexample is, of course, sufficient to disprove a conjecture.

Even if you accept the reality of the notational artifact $d^*$, this makes no sense: the point of Fermat’s last theorem is that there are no integer solutions; $d^*$ is not an integer; $(1-d^*)10$ is not an integer. Surely he’s not that stupid. Surely he can’t possibly believe that he’s disproven Fermat using non-integer solutions? I mean, how is this different from just claiming that you can use (2, 3, 351/3) as a counterexample for n=3?

But… he’s serious. He’s serious enough that he’s published published a real paper making the claim (albeit in crackpot journals, which are the only places that would accept this rubbish).

Anyway, jumping back for a moment… You can create a theory of numbers around this $d^*$ rubbish. The problem is, it’s not a particularly useful theory. Why? Because it breaks some of the fundamental properties that we expect numbers to have. The real numbers define a structure called a field, and a huge amount of what we really do with numbers is built on the fundamental properties of the field structure. One of the necessary properties of a field is that it has unique identity elements for addition and multiplication. If you don’t have unique identities, then everything collapses.

So… Take $\frac{1}{9}$. That’s the multiplicative inverse of 9. So, by definition, $\frac{1}{9}*9 = 1$ – the multiplicative identity.

In Escultura’s theory, $\frac{1}{9}$ is a shorthand for the number that has a representation of 0.1111…. So, $\frac{1}{9}*9 = 0.1111....*9 = 0.9999... = (1-d^*)$. So $(1-d^*)$ is also a multiplicative identity. By a similar process, you can show that $d^*$ itself must be the additive identity. So either $d^* == 0$, or else you’ve lost the field structure, and with it, pretty much all of real number theory.

Metaphorical Crankery: a bad metaphor is like a steaming pile of …

So, another bit of Cantor stuff. This time, it really isn’t Cantor
crankery, so much as it is just Cantor muddling. The post
that provoked this
is not, I think, crankery of any kind – but it
demonstrates a common problem that drives me crazy; to steal a nifty phrase
from youaredumb.net, people who can’t count to meta-three really shouldn’t try
to use metaphors.

The problem is: You use a metaphor to describe some concept. The metaphor
isn’t the thing you describe – it’s just a tool that you use. But
someone takes the metaphor, and runs with it, making arguments that are built
entirely on metaphor, but which bear no relation to the real underlying
concept. And they believe that whatever conclusions they draw from the
metaphor must, therefore, apply to the original concept.

In the context of Cantor, I’ve seen this a lot of times. The post that
inspired me to write this isn’t, I think, really making this mistake. I think
that the author is actually trying to argue that this is a lousy metaphor to
use for Cantor, and proposing an alternative. But I’ve seen exactly this
reasoning used, many times, by Cantor cranks as a purported disproof. The
cranky claim is: Cantor’s proof is wrong, because it cheats.

Of course, if you look at Cantor’s proof as a mathematical construct, it’s
a perfectly valid, logical, and even beautiful proof by contradiction. There’s
no cheating. So where do the “cheat” claims come from?

Grandiose Crankery: Cantor, Godel, Church, Turing, … Morons!

A bunch of people have been asking me to take a look at yet another piece of Cantor crankery recently posted to Arxiv. In general, I’m sick and tired of Cantor crankery – it’s been occupying much too much space on this blog lately. But this one is a real prize. It’s an approach that I’ve never seen before: instead of the usual weaseling around, this one goes straight for Cantor’s proof.

But it does much, much more than that. In terms of ambition, this thing really takes the cake. According to the author, one J. A. Perez, he doesn’t just refute Cantor. No, that would be trivial! Every run-of-the-mill crackpot claims to refute cantor! Perez claims to refute Cantor, Gödel, Church, and Turing. Among others. He claims to reform the axiom of infinity in set theory to remove the problems that it supposedly causes. He claims to be able to use his reformed axiom of infinity together with his refutation of Cantor to get rid of the continuum hypothesis, and to eliminate any strange results proved by the axiom of choice.

Yes, Mr. (Dr? Professor? J. Random Schmuck?) Perez is nothing if not a true mastermind, a mathematical genius of utterly epic proportions! The man who single-handedly refutes pretty much all of 20th century mathematics! The man who has determined that now we must throw away Cantor and Gödel, and reinstate Hilbert’s program. The perfect mathematics is at hand, if we will only listen to his utter brilliance!

A Crank among Cranks: Debating John Gabriel

So, remember back in December, I wrote a post about a Cantor crank who had a Knol page supposedly refuting Cantor’s diagonalization?

This week, I foolishly let myself get drawn into an extended conversation with him in comments. Since it’s a comment thread on an old post that had been inactive for close to two months before this started, I assume most people haven’t followed it. In an attempt to salvage something from the time I wasted with him, I’m going to share the discussion with you in this new post. It’s entertaining, in a pathetic sort of way; and it’s enlightening, in that it’s one of the most perfect demonstrations of the behavior of a crank that I’ve yet encountered. Enjoy!

I’m going to edit for formatting purposes, and I’ll interject a few comments, but the text of the messages is absolutely untouched – which you can verify, if you want, by checking the comment thread on the original post. The actual discussion starts with this comment, although there’s a bit of content-free back and forth in the dozen or so comments before that.

Cantor Crankery and Worthless Wankery

Poor Georg Cantor.

During his life, he suffered from dreadful depression. He was mocked by
his mathematical colleagues, who didn’t understand his work. And after his
death, he’s become the number one target of mathematical crackpots.

As I’ve mentioned before, I get a lot of messages either from or
about Cantor cranks. I could easily fill this blog with nothing but
Cantor-crankery. (In fact, I just created a new category for Cantor-crankery.) I generally try to ignore it, except for that rare once-in-a-while that there’s something novel.

that was posted to arxiv, called Cantor vs Cantor. It’s novel and amusing. Still wrong,
of course, but wrong in an amusingly silly way. This one, at least, doesn’t quite
fall into the usual trap of ignoring Cantor while supposedly refuting him.

You see, 99 times out of 100, Cantor cranks claim to have
some construction that generates a perfect one-to-one mapping between the
natural numbers and the reals, and that therefore, Cantor must have been wrong.
But they never address Cantors proof. Cantors proof shows how, given any
purported mapping from the natural numbers to the real, you can construct at example
of a real number which isn’t in the map. By ignoring that, the cranks’ arguments
fail: Cantor’s method still generates a counterexample to their mappings. You
can’t defeat Cantor’s proof without actually addressing it.

Of course, note that I said that he didn’t quite fall for the
usual trap. Once you decompose his argument, it does end up with the same problem. But he at least tries to address it.

Another Cantor Crank: Representation vs. Enumeration

But the Knol article gives it a sort of new prominence, and since we’ve recently had one long argument about Cantor cranks, I think it’s worth another glance.

It’s pretty much another one of those cranky arguments where they say “Look! I found a 1:1 mapping between the natural and the reals! Cantor was a fool!”

The Hallmarks of Crackpottery, Part 1: Two Comments

Another chaos theory post is in progress. But while I was working on it, a couple of
comments arrived on some old posts. In general, I’d reply on those posts if I thought
it was worth it. But the two comments are interesting not because they actually lend
anything to the discussion to which they are attached, but because they are perfect
demonstrations of two of the most common forms of crackpottery – what I call the
“Education? I don’t need no stinkin’ education” school, and the “I’m so smart that I don’t

The Continuum Hypothesis Solved: All Infinities are the Same? Nope.

Of all of the work in the history of mathematics, nothing seems to attract so much controversy, or even outright hatred as Cantor’s diagonalization. The idea of comparing the sizes of different infinities – and worse, of actually concluding that there are different infinities, where some infinities are larger than others – drives some people absolutely crazy. As a result, countless people bothered by this have tried to come up with all sorts of arguments about why Cantor was wrong, and there’s only one infinity.

Today’s post is another example of that. This one is sort of special. Unless I’m very much mistaken, the author of this sent me his argument by email last year, and I actually exchanged several messages with him, before he concluded, roughly “We’ll just have to agree to disagree.” (I didn’t keep the email, so I’m not certain, but it’s exactly the same argument, and the authors name is vaguely familiar. If I’m wrong, I apologize.)

Anyway, this author actually went ahead and wrote the argument up as a full technical paper, and submitted it to arXiv, where you can download it in all it’s glory. I’ll be honest, and admit that I’m a little bit impressed by this. The proof is still completely wrong, and the arguments that surround it range from wrong to, well, not even wrong. But at least the author has the Chutzpah to treat his work seriously, and submit it to a place where it can actually be reviewed, instead of ranting about conspiracies.

For those who aren’t familiar with the work of Cantor, you can read my article on it here. A short summary is that Cantor invented set theory, and then used it to study the construction of finite and infinite sets, and their relationships with numbers. One of the very surprising conclusions was that you can compare the size of infinite sets: two sets have the same size if there’s a way to create a one-to-one mapping between their members. An infinite set A is larger than another infinite set B if every possible mapping from members of B to members of A will exclude at least one member of A. Using that idea, Cantor showed that if you try to create a mapping from the integers to the real numbers, for any possible mapping, you can generate a real number that isn’t included in that mapping – and therefore, the set of reals is larger than the set of integers, even though both are infinite.

This really bothers people, including our intrepid author. In his introduction, he gives his motivation:

Cantor’s theory mentioned in fact that there were several dimensions for infinity. This, however, is questionable. Infinity can be thought as an absolute concept and there should not exist several dimensions for the infinite.

Philosophically, the idea of multiple infinities is uncomfortable. Our intuitive notion of infinity is of an absolute, transcendent concept, and the idea of being able to differentiate – or worse, to be able to compare the sizes of different infinities seems wrong.

Of course, what seems wrong isn’t necessarily wrong. It seems wrong that the mass of something can change depending on how fast it’s moving. It seems even more wrong that looked at from different viewpoints, the same object can have different masses. But that doesn’t change the fact that it’s true. Reality – and even worse, abstract mathematics – isn’t constrained by what makes us comfortable.

Back to the paper. In the very next sentence, he goes completely off the rails.

Revisiting Old Friends, the Finale

Now, it’s time for the final chapter in my “visits with old friends” series, which brings us
back to the Good Math/Bad Math all-time reader favorite crackpot: Mr. George Shollenberger.

Last time I mentioned George, a number of readers commented on the fact that it’s cruel to pick on poor George, because the guy is clearly not all there: he’s suffered from a number of medical problems which can cause impaired reasoning, etc. I don’t like to be pointlessly cruel, and in general, I think it’s inappropriate to be harsh with someone who is suffering from medical problems – particularly medical problems that affect the functioning of the mind.

But I don’t cut George any slack. None at all. Because much of what spews from his mouth isn’t the
result of an impaired mind: it’s the product of an arrogant, vile, awful person. Since our last contact
with George, aside from the humorous idiocy, he’s also taken it upon himself to explain how we’ll never
have a peaceful society in America until we get rid of all of those damned foreigners
, who have
“unamerican mindsets”. That post was where I really started to despise George. He’s not just a senile
old fool – he’s a disgusting, horrible person, just another of the evil ghouls who used a horrible
event, committed by a severely ill individual, as a cudgel to promote a deeply racist agenda.